Ground performance of the High-Energy Focusing Telescope (HEFT) attitude control system

نویسندگان

  • Kurt Gunderson
  • C. M. Hubert Chen
  • Finn Christensen
  • William Craig
  • Todd Decker
  • Charles Hailey
  • Fiona Harrison
  • Ryan McLean
  • Ron Wurtz
  • Klaus Ziock
چکیده

The High Energy Focusing Telescope (HEFT) is a balloon-borne, hard x-ray/gamma ray (20-70 keV) astronomical experiment. HEFT’s 10 arcminute field of view and 1 arcminute angular resolution place challenging demands on its attitude control system (ACS). A microprocessor-based ACS has been developed to manage target acquisition and sidereal tracking. The ACS consists of a variety of sensors and actuators, with provisions for 2-way ground communication, all controlled by an on-board computer. Ground based pointing performance measurements indicate 1σ jitter of 7′′ and gyro drift rates of <1′′ s. Jitter is expected to worsen in the flight environment, but star tracker data are expected to reduce drift rates significantly, enabling a predicted 1σ absolute attitude determination of ≥4.7′′. HEFT is scheduled for flight in Spring 2004.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

01 The conceptual design of the photovoltaic solar thermal collector hybrid system and the ground source heat pump to provide electricity, heating and cooling a residential building focusing on technical, economic and environmental parameters.

This paper attempts to present and compare four solar assisted ground source heat pump combined systems with series and parallel layouts and direct and indirect heat exchange in Zahedan in order to supply part of the electricity demand for equipment and selling surplus electricity to the grid as a source of project financing and revenue generation for residents, moreover, fulfill the region's n...

متن کامل

Fast optical metrology of the hard x-ray optics for the High Energy Focusing Telescope (HEFT) †

We describe a fast figure metrology system designed for the several thousand mirror quadrants in the High Energy Focusing Telescope (HEFT) balloon experiment. HEFT's multilayer coated hard x-ray optics will have ~ 1 arcminute HEW and operate at 20-80 keV. The optics are a conical approximation to the Wolter-I configuration. Our automated system can measure the axial figure error, in-phase and o...

متن کامل

High-Performance Robust Three-Axis Finite-Time Attitude Control Approach Incorporating Quaternion Based Estimation Scheme to Overactuated Spacecraft

With a focus on investigations in the area of overactuated spacecraft, a new high-performance robust three-axis finite-time attitude control approach, which is organized in connection with the quaternion based estimation scheme is proposed in the present research with respect to state-of-the-art. The approach proposed here is realized based upon double closed loops to deal with the angular rate...

متن کامل

Coating of the HEFT telescope mirrors. Method and results

We report on the coating of depth graded W/Si multilayers on the thermally slumped glass substrates for the HEFT flight telescopes. The coatings consists of several hundred bilayers in an optimized graded power law design with stringent requirements on uniformity and interfacial roughness. We present the details of the planar magnetron sputtering facility including the optimization of power, Ar...

متن کامل

Designing a predictive guidance and control system for maneuverable ground moving target tracking in 3D space using a Hexarotor

In this paper, the continuity of tracking a ground moving target using a Hexarotor is considered in the presence of sudden changes in direction, deceptive movements, temporary departure from the field of view (FOV) and changes in the height of the target. In this regard, a hierarchical guidance and control system for target tracking problem in an unknown environment and disturbances is proposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003